åæ°ã¢ãžã¥ãŒã«ç·åã¬ã€ãã§æçæ°èšç®ããã¹ã¿ãŒãåºæ¬æŒç®ã倿§ãªå¿çšäŸãå®è·µçãªåé¡è§£æ±ºæ³ãäžçäžã®èªè ã«åããŠè§£èª¬ããŸãã
åæ°ã¢ãžã¥ãŒã«ïŒã°ããŒãã«ãªèªè ã®ããã®æçæ°èšç®ãã¹ã¿ãŒ
åºå€§ãªæ°åŠã®äžçã«ãããŠãæçæ°ã¯åºæ¬çãªæ§æèŠçŽ ã§ãããæ¥åžžã®æž¬å®ããé«åºŠãªç§åŠçè«ãŸã§ãæ§ã ãªæŠå¿µã®åºç€ããªããŠããŸãããåæ°ã¢ãžã¥ãŒã«ãã¯ããã®æçæ°ãçè§£ããäžã§äžå¿çãªåœ¹å²ãæ ããæ°åŠçãªãã©ã·ãŒã®éèŠãªèŠçŽ ã§ãããã®ç·åã¬ã€ãã¯ãåæ°ã®äžçãåããããã解説ãããã®æŒç®ãå¿çšããããŠç¿åŸã«å¿ èŠãªã¹ãã«ã«ã€ããŠãã°ããŒãã«ãªèŠç¹ããæäŸããããšãç®çãšããŠããŸãã
ããªããåããŠåæ°ã«è§ŠããåŠçã§ãããæå°æ³ãåäžããããæè²è ã§ããããããã¯æ°éçã¹ãã«ã確åºãããã®ã«ãããå°éå®¶ã§ããããã®æ¢æ±ã¯æçæ°èšç®ã«é¢ãã確ããªçè§£ãããªãã«ããããã§ããããç§ãã¡ã¯ããã®æ žå¿çãªååãæ·±ãæãäžãã倿§ãªåœéçãªäŸãæ¢ããæåçã»å°ççãªå¢çãè¶ããå®è·µçãªæŽå¯ãæäŸããŸãã
æçæ°ãšã¯ïŒ
åæ°èšç®ã®ä»çµã¿ã«èžã¿èŸŒãåã«ããŸã察象ãå®çŸ©ããããšãäžå¯æ¬ ã§ããæçæ°ãšã¯ãåæ° $\frac{p}{q}$ ã®åœ¢ã§è¡šãããšãã§ããä»»æã®æ°ã®ããšã§ããããã§ã$p$ïŒååïŒãš$q$ïŒåæ¯ïŒã¯ãšãã«æŽæ°ã§ããã$q$ã¯ãŒãã«çãããããŸããïŒ$q \neq 0$ïŒã
èšå· $\mathbb{Q}$ ã§ãã°ãã°è¡šãããæçæ°ã®éåã«ã¯ã以äžãå«ãŸããŸãïŒ
- æŽæ°ïŒãã¹ãŠã®æŽæ°ã¯ã忝ã1ãšããåæ°ãšããŠæžãããšãã§ããŸãïŒäŸïŒ5㯠$\frac{5}{1}$ ãšæžããŸãïŒã
- æéå°æ°ïŒæéã®æ¡æ°ã§çµããå°æ°ã¯ãåæ°ãšããŠè¡šçŸã§ããŸãïŒäŸïŒ0.75㯠$\frac{3}{4}$ ã«çããã§ãïŒã
- 埪ç°å°æ°ïŒæ¡ãç¹°ãè¿ããã¿ãŒã³ãæã€å°æ°ããåæ°ãšããŠè¡šçŸã§ããŸãïŒäŸïŒ0.333...㯠$\frac{1}{3}$ ã«çããã§ãïŒã
ãã®å®çŸ©ãçè§£ããããšããæçæ°ã®æ®éæ§ãšæçšæ§ãèªèããããã®ç¬¬äžæ©ã§ãã
æ§æèŠçŽ ïŒåæ°ã®è¡šèšæ³ãšçšèªã®çè§£
åæ°ã¯éåžžãæ¬¡ã®ããã«è¡šãããŸãïŒ
$\frac{\text{åå}}{\text{忝}}$
åéšã®åç§°ïŒ
- ååïŒäžã®æ°åãå šäœã®ãã¡ãããã€ã®éšåãæã£ãŠãããã瀺ããŸãã
- 忝ïŒäžã®æ°åãå šäœãããã€ã®çããéšåã«åããããŠãããã瀺ããŸãã
ããã§ã¯ãæ§ã ãªçš®é¡ã®åæ°ãæ¢ããŸãïŒ
çåæ°
çåæ°ã§ã¯ãååã忝ãããå°ãããªããŸããããã¯ãå€ã1å šäœããå°ããããšãæå³ããŸããäŸãã°ã$\frac{2}{5}$ ã¯çåæ°ã§ãã
仮忰
仮忰ã§ã¯ãååã忝以äžã«ãªããŸããããã¯ãå€ã1å šäœã«çãããããããã倧ããããšãæå³ããŸããäŸãã°ã$\frac{7}{3}$ ã¯ä»®åæ°ã§ãã
åž¯åæ°
åž¯åæ°ã¯ãæŽæ°ãšçåæ°ãçµã¿åããããã®ã§ãã1ãã倧ããéã衚ãã®ã«äŸ¿å©ãªæ¹æ³ã§ããäŸãã°ã$2\frac{1}{3}$ ã¯ã2ã€ã®å šäœãšããã1ã€ã®å šäœã®3åã®1ã衚ããŸãã
çäŸ¡åæ°ãšçŽå
2ã€ã®åæ°ã¯ãååãšåæ¯ãç°ãªã£ãŠããŠãåãå€ã衚ãå Žåãç䟡ã§ãããšèŠãªãããŸããããã¯åæ°ã®æŒç®ãè¡ãäžã§åºæ¬çãªæŠå¿µã§ãã
çäŸ¡åæ°ã®èŠã€ãæ¹ïŒ
çäŸ¡åæ°ãèŠã€ããã«ã¯ãååãšåæ¯ã®äž¡æ¹ã«åããŒãã§ãªãæ°ãããããå²ã£ããããŸããããã¯å®è³ªçã«1ããããŠããïŒãŸãã¯å²ã£ãŠããïŒã®ãšåããªã®ã§ïŒäŸïŒ$\frac{2}{2} = 1$, $\frac{5}{5} = 1$ïŒãåæ°ã®å€ã¯å€ãããŸããã
äŸïŒ
åæ° $\frac{1}{2}$ ãèããŸãã
- $\frac{3}{3}$ ããããïŒ$\frac{1}{2} \times \frac{3}{3} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6}$ããããã£ãŠã$\frac{1}{2}$ 㯠$\frac{3}{6}$ ãšç䟡ã§ãã
- $\frac{5}{5}$ ããããïŒ$\frac{1}{2} \times \frac{5}{5} = \frac{1 \times 5}{2 \times 5} = \frac{5}{10}$ããããã£ãŠã$\frac{1}{2}$ 㯠$\frac{5}{10}$ ãšç䟡ã§ãã
åæ°ã®çŽåïŒæ¢çŽåæ°ã«ããïŒïŒ
åæ°ãçŽåãããšã¯ãååãšåæ¯ã1以å€ã®å ±éã®çŽæ°ãæããªãç䟡ãªåœ¢ã«æžãçŽãããšã§ããããã¯ãååãšåæ¯ã®äž¡æ¹ããããã®æå€§å ¬çŽæ°ïŒGCDïŒã§å²ãããšã«ãã£ãŠéæãããŸãã
äŸïŒ
åæ° $\frac{12}{18}$ ãçŽåããªããã
- 12ãš18ã®æå€§å ¬çŽæ°ãèŠã€ããŸãã12ã®çŽæ°ã¯1, 2, 3, 4, 6, 12ã18ã®çŽæ°ã¯1, 2, 3, 6, 9, 18ãæå€§å ¬çŽæ°ã¯6ã§ãã
- ååãšåæ¯ã®äž¡æ¹ã6ã§å²ããŸãïŒ$\frac{12 \div 6}{18 \div 6} = \frac{2}{3}$ã
ãããã£ãŠã$\frac{12}{18}$ ã®çŽåããã圢㯠$\frac{2}{3}$ ã§ãã
ã°ããŒãã«ãªé¢é£æ§ïŒçŽåã®çè§£ã¯ãåœé貿æãæšæºåããã詊éšã«ãããŠãäžè²«ããæ°å€è¡šçŸãäžå¯æ¬ ãªå Žé¢ã§éèŠã§ããäŸãã°ãç°ãªãåœã®ãµãã©ã€ã€ãŒããã®ææä»æ§ãæ¯èŒããéããã¹ãŠã®æž¬å®å€ãæãåçŽãªåæ°ã®åœ¢ã«ããããšã§ãæ£ç¢ºãªè©äŸ¡ã容æã«ãªããŸãã
åæ°ã®æŒç®
åæ°ã¢ãžã¥ãŒã«ã®äžå¿ã¯ã4ã€ã®åºæ¬çãªç®è¡æŒç®ïŒè¶³ãç®ãåŒãç®ãããç®ãå²ãç®ïŒãç¿åŸããããšã§ãã
1. åæ°ã®è¶³ãç®ãšåŒãç®
åæ°ãè¶³ãããåŒãããããã«ã¯ã忝ãå ±éã§ããå¿ èŠããããŸãïŒéåïŒã忝ããã§ã«åãå Žåã¯ãååãè¶³ãããåŒãããããŠãå ±éã®åæ¯ããã®ãŸãŸäœ¿ããŸãã
ã±ãŒã¹1ïŒåæ¯ãåãå Žå
äŸïŒè¶³ãç®ïŒïŒ $\frac{3}{7} + \frac{2}{7} = \frac{3+2}{7} = \frac{5}{7}$
äŸïŒåŒãç®ïŒïŒ $\frac{6}{8} - \frac{1}{8} = \frac{6-1}{8} = \frac{5}{8}$
ã±ãŒã¹2ïŒåæ¯ãç°ãªãå Žå
忝ãç°ãªãå Žåã¯ããããããå ±éã®åæ¯ãæã€çäŸ¡åæ°ã«å€æããå¿ èŠããããŸããæãå¹ççãªå ±é忝ã¯ãå ã®åæ¯ã®æå°å ¬åæ°ïŒLCMïŒã§ãã
äŸïŒè¶³ãç®ïŒïŒ $\frac{1}{3} + \frac{1}{4}$
- 3ãš4ã®æå°å ¬åæ°ãèŠã€ããŸãã3ã®åæ°ã¯3, 6, 9, 12, 15...ã4ã®åæ°ã¯4, 8, 12, 16...ãæå°å ¬åæ°ã¯12ã§ãã
- $\frac{1}{3}$ ã忝ã12ã®çäŸ¡åæ°ã«å€æããŸãïŒ$\frac{1}{3} \times \frac{4}{4} = \frac{4}{12}$ã
- $\frac{1}{4}$ ã忝ã12ã®çäŸ¡åæ°ã«å€æããŸãïŒ$\frac{1}{4} \times \frac{3}{3} = \frac{3}{12}$ã
- ããã§åæ°ãè¶³ãåãããŸãïŒ$\frac{4}{12} + \frac{3}{12} = \frac{4+3}{12} = \frac{7}{12}$ã
äŸïŒåŒãç®ïŒïŒ $\frac{5}{6} - \frac{1}{2}$
- 6ãš2ã®æå°å ¬åæ°ã¯6ã§ãã
- $\frac{1}{2}$ ã忝ã6ã®çäŸ¡åæ°ã«å€æããŸãïŒ$\frac{1}{2} \times \frac{3}{3} = \frac{3}{6}$ã
- åŒãç®ãããŸãïŒ$\frac{5}{6} - \frac{3}{6} = \frac{5-3}{6} = \frac{2}{6}$ã
- çµæãçŽåããŸãïŒ$\frac{2}{6} = \frac{1}{3}$ã
åœéçãªå¿çšïŒè€æ°ã®åœã«ãŸããã建èšãããžã§ã¯ãã§ã¯ããšã³ãžãã¢ã¯ç°ãªãåæ°ã€ã³ãåºæºïŒäŸïŒåç±³ãšæ§è±åœåºæºïŒã§äžããããæž¬å®å€ãè¶³ãåãããå¿ èŠããããããããŸãããå ±é忝ãäžè²«ããŠäœ¿çšããããšã¯ãæ£ç¢ºãªææèšç®ã®ããã«äžå¯æ¬ ã§ãã
2. åæ°ã®ããç®
åæ°ã®ããç®ã¯ç°¡åã§ãïŒååå士ãããåããã忝å士ãããåãããŸãã
å ¬åŒïŒ $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$
äŸïŒ $\frac{2}{3} \times \frac{4}{5}$
$\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5} = \frac{8}{15}$
æŽæ°ãšã®ããç®ïŒåæ°ãæŽæ°ã§ãããã«ã¯ãæŽæ°ã忝ã1ã®åæ°ãšããŠæ±ããŸãã
äŸïŒ $3 \times \frac{1}{4}$
$3 \times \frac{1}{4} = \frac{3}{1} \times \frac{1}{4} = \frac{3 \times 1}{1 \times 4} = \frac{3}{4}$
ããç®ã®åã®çŽåïŒç°ãªãåæ°ã®ååãšåæ¯ã®éã§å ±éã®çŽæ°ãçžæ®ºããããšã§ãããç®ã®åã«ããçŽåã§ããŸãã
äŸïŒ $\frac{3}{8} \times \frac{4}{9}$
- 3ãš9ã¯å ±éã®çŽæ°3ãå ±æããŠããããšã«æ³šæããŠãã ããã
- 8ãš4ã¯å ±éã®çŽæ°4ãå ±æããŠããããšã«æ³šæããŠãã ããã
- çŽåããŸãïŒ$\frac{\cancel{3}^1}{\cancel{8}^2} \times \frac{\cancel{4}^1}{\cancel{9}^3} = \frac{1 \times 1}{2 \times 3} = \frac{1}{6}$
ã°ããŒãã«ãªå¿çšïŒã¬ã·ãã®åéã調æŽããéãææã®éãããç®ã§å€æŽããããšã¯äžè¬çã§ãã4人åã®ã¬ã·ãã10人åã«èª¿æŽããã«ã¯ãåæ°ã«ããã¹ã±ãŒãªã³ã°ãå¿ èŠã§ããåæ§ã«ãåœéçãªãããžã§ã¯ã管çã«ãããæ¯äŸé åèšç®ãããã°ãã°åæ°ã®ããç®ã«äŸåããŸãã
3. åæ°ã®å²ãç®
åæ°ã§å²ãããšã¯ããã®éæ°ããããããšãšç䟡ã§ããåæ° $\frac{a}{b}$ ã®éæ°ã¯ $\frac{b}{a}$ ã§ãã
å ¬åŒïŒ $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}$
äŸïŒ $\frac{1}{2} \div \frac{3}{4}$
- $\frac{3}{4}$ ã®éæ°ã§ãã $\frac{4}{3}$ ãèŠã€ããŸãã
- ããç®ãããŸãïŒ$\frac{1}{2} \times \frac{4}{3} = \frac{1 \times 4}{2 \times 3} = \frac{4}{6}$ã
- çŽåããŸãïŒ$\frac{4}{6} = \frac{2}{3}$ã
æŽæ°ãšã®å²ãç®ïŒæŽæ°ãåæ°ã§å²ãã«ã¯ãæŽæ°ãåæ°ïŒåæ¯1ïŒãšããŠæžããŸããåæ°ãæŽæ°ã§å²ãã«ã¯ãæŽæ°ãåæ°ãšããŠæžããŠããèšç®ãé²ããŸãã
äŸïŒ $5 \div \frac{2}{3}$
$5 \div \frac{2}{3} = \frac{5}{1} \div \frac{2}{3} = \frac{5}{1} \times \frac{3}{2} = \frac{15}{2}$
äŸïŒ $\frac{3}{4} \div 2$
$\frac{3}{4} \div 2 = \frac{3}{4} \div \frac{2}{1} = \frac{3}{4} \times \frac{1}{2} = \frac{3}{8}$
ã°ããŒãã«ãªæèïŒå ±æãªãœãŒã¹ïŒåž¯åå¹ ãäºç®ãªã©ïŒãäžçäžã®è€æ°ã®ããŒã ããããžã§ã¯ãã«åé ããç¶æ³ãæ³åããŠã¿ãŠãã ãããåæ°ã®å²ãç®ã¯ãå ¬å¹³ãªåãåãæ±ºå®ããã®ã«åœ¹ç«ã¡ãŸããããäŒæ¥ã幎éäºç®ã® $\frac{3}{4}$ ãæ®ããŠãããããã3ã€ã®åœééšéã«åçã«åããå¿ èŠãããå Žåãåæ°ã®å²ãç®ãéµãšãªããŸãã
åž¯åæ°ã®æ±ã
åž¯åæ°ã¯ãçŸå®äžçã®éã衚çŸããã®ã«ããçŽæçã§ããããšãå€ãã§ããããããç®è¡æŒç®ã®ããã«ã¯ãéåžžã仮忰ã«å€æããã®ãæåã§ãã
åž¯åæ°ã仮忰ã«å€æãã
åž¯åæ° $a\frac{b}{c}$ ã仮忰ã«å€æããã«ã¯ïŒ
å ¬åŒïŒ $\frac{(a \times c) + b}{c}$
äŸïŒ $2\frac{3}{5}$ ã仮忰ã«å€æããªããã
$a=2, b=3, c=5$ã
$\frac{(2 \times 5) + 3}{5} = \frac{10 + 3}{5} = \frac{13}{5}$
仮忰ãåž¯åæ°ã«å€æãã
仮忰 $\frac{p}{q}$ ãåž¯åæ°ã«å€æããã«ã¯ïŒ
- ååïŒ$p$ïŒã忝ïŒ$q$ïŒã§å²ããŸãã
- åãåž¯åæ°ã®æŽæ°éšåã«ãªããŸãã
- äœããæ°ããååã«ãªããŸãã
- 忝ã¯å€ãããŸããã
äŸïŒ $\frac{17}{4}$ ãåž¯åæ°ã«å€æããªããã
- 17ã4ã§å²ããŸãïŒ$17 \div 4 = 4$ ã§äœã1ã
- åã¯4ïŒæŽæ°éšåïŒã§ãã
- äœãã¯1ïŒæ°ããååïŒã§ãã
- 忝ã¯4ã§ãã
ãããã£ãŠã$\frac{17}{4}$ 㯠$4\frac{1}{4}$ ã«çããã§ãã
åž¯åæ°ã®æŒç®
仮忰ã«å€æããã°ãåž¯åæ°ã¯åè¿°ã®ã«ãŒã«ã䜿ã£ãŠè¶³ãç®ãåŒãç®ãããç®ãå²ãç®ãã§ããŸãã
äŸïŒè¶³ãç®ïŒïŒ $1\frac{1}{2} + 2\frac{1}{4}$
- 仮忰ã«å€æããŸãïŒ$1\frac{1}{2} = \frac{3}{2}$ ããã³ $2\frac{1}{4} = \frac{9}{4}$ã
- è¶³ãç®ãããŸãïŒ$\frac{3}{2} + \frac{9}{4}$ãå ±éã®åæ¯ïŒ4ïŒãèŠã€ããŸãïŒ$\frac{6}{4} + \frac{9}{4} = \frac{15}{4}$ã
- åž¯åæ°ã«æ»ããŸãïŒ$\frac{15}{4} = 3\frac{3}{4}$ã
äŸïŒããç®ïŒïŒ $3\frac{1}{3} \times 1\frac{1}{2}$
- 仮忰ã«å€æããŸãïŒ$3\frac{1}{3} = \frac{10}{3}$ ããã³ $1\frac{1}{2} = \frac{3}{2}$ã
- ããç®ãããŸãïŒ$\frac{10}{3} \times \frac{3}{2} = \frac{30}{6}$ã
- çŽåããŠåž¯åæ°ã«å€æããŸãïŒ$\frac{30}{6} = 5$ã
å®è·µçãªäœ¿çšäŸïŒã°ããŒãã«ãªæµ·éäŒç€Ÿã§ç©æµã調æŽããå Žé¢ãæ³åããŠãã ãããç°ãªãã³ã³ãããµã€ãºãã¡ãŒãã«ããã£ãŒãã®åž¯åæ°ã§æž¬å®ãããããšããããŸããæ··èŒè²šç©ã®ç·äœç©ãå¿ èŠãªã³ã³ããæ°ãèšç®ããã«ã¯ãåž¯åæ°ã®èšç®ã«ç¿çããŠããå¿ èŠããããŸãã
å®ç€ŸäŒã«ãããåæ°ïŒã°ããŒãã«ãªå¿çšäŸ
åæ°ã¢ãžã¥ãŒã«ã¯åãªãåŠè¡çãªæŒç¿ã§ã¯ãããŸãããããã¯äžçãçè§£ããããã²ãŒãããããã®äžå¯æ¬ ãªããŒã«ã§ãã
1. 枬å®ãšæ¯ç
å°ãã$\frac{1}{2}$ ã®ã¹ãã€ã¹ãå¿ èŠãšããæçã®ã¬ã·ãããã$5\frac{3}{4}$ã€ã³ãã®ãããªé·ããæå®ãã建èšã®éåçãŸã§ãåæ°ã¯æž¬å®ã«ãããŠè³ãæã«ååšããŸãã
ã°ããŒãã«ãªäŸïŒåœéçãªæçã§ã¯ã¡ãŒãã«æ³ããã䜿ãããŸãããäžçäžã®å€ãã®äŒçµ±çãªã¬ã·ãã¯ãæ¬è³ªçã«åæ°ã§ããäœç©åäœïŒã«ãããã¹ããŒã³ïŒã«äŸåããŠããŸãããããã®åæ°ãçè§£ããããšã§ãç°ãªãæåã®æçãæºåããéã®çæ£æ§ãä¿èšŒãããŸãã
2. éèãšçµæž
éå©ã¯ãã°ãã°ããŒã»ã³ããŒãžïŒ100åã®ãããããšããåæ°ïŒã§è¡šãããæ ªäŸ¡ã®åãã¯é貚åäœã®åæ°ã§ããããšããããçµæžææšã¯é »ç¹ã«åæ°ã®å€åãçšããŠå ±åãããŸãã
ã°ããŒãã«ãªäŸïŒçºæ¿ã¬ãŒãã¯å®ç§ãªå®äŸã§ããã¬ãŒãã1 USD = 0.92 EURã§ãããããããŸãããããã¯å°æ°ã§ãããæ¯çã衚ããŠããããã®ãããªæ¯çã®æ±ãæ¹ãçè§£ããããšã¯åæ°èšç®ã«äŒŒãŠããŸããç°ãªãåžå Žéã®æè³æ©äŒãæ¯èŒããã«ã¯ããã°ãã°åæ°ã§ã®ãªã¿ãŒã³ãçè§£ããå¿ èŠããããŸãã
3. ç§åŠãšå·¥åŠ
ç©çåŠã§ã¯ãå ¬åŒã«ã¯ãã°ãã°æ¯çãå²åãå«ãŸããŸããååŠã§ã¯ãæº¶æ¶²ã®æ¿åºŠã¯åæ°ãããŒã»ã³ããŒãžã§è¡šãããŸããå·¥åŠåéã§ã¯ãå¿åãã²ãã¿ããã«ã¯ãå¹çã«é¢ããèšç®ã«åæ°ãå€çšãããŸãã
ã°ããŒãã«ãªäŸïŒèªç©ºæ©ã®èšèšã«ã¯ã空åå¹çããã°ãã°åæ°ã®æææ¯ãšããŠè¡šãããè€éãªèšç®ãå«ãŸããŸããäžçã®èªç©ºå®å®äŒæ¥ã¯ãç°ãªãèŠå¶ç°å¢äžã§å®å šæ§ãšæ§èœã確ä¿ããããã«ãäžè²«ããåæ°ã®è¡šçŸã䜿çšããªããã°ãªããŸããã
4. ããŒã¿åæãšçµ±èš
ããŒã¿ãåæããéãåæ°ã¯å²åã確çãåŸåã衚ãããã«äœ¿çšãããŸããäŸãã°ããã調æ»ã§åçè ã®$\frac{2}{3}$ãç¹å®ã®ååã奜ãããšãããããããããŸããã
ã°ããŒãã«ãªäŸïŒå€åœç±äŒæ¥ãåžå Žã·ã§ã¢ãåæããçµæããã®è£œåãAå°åã§åžå Žã®$\frac{1}{5}$ãBå°åã§$\frac{1}{10}$ãå ããŠããããšãããããããããŸãããå šäžçã®åžå Žã·ã§ã¢ãçè§£ããããã«ã¯ããããã®åæ°ãæ£ç¢ºã«è¶³ãåãããå¿ èŠããããŸãã
ããããèœãšã穎ãšãã®åé¿æ¹æ³
確ããªçè§£ããã£ãŠããããããééãã¯èµ·ããåŸãŸãããããã®èœãšã穎ãèªèããããšã§ãæ£ç¢ºæ§ãå€§å¹ ã«åäžãããããšãã§ããŸãïŒ
- 忝ã®è¶³ãç®/åŒãç®ïŒéåžžã«äžè¬çãªééãã¯ã忝ãç°ãªãå Žåã«å ±é忝ã®å¿ èŠæ§ãå¿ãã忝ãè¶³ãããåŒãããããããšã§ããåžžã«æåã«æå°å ¬åæ°ãèŠã€ããŠãã ããã
- å²ãç®ã§ã®éæ°ã®èª€çšïŒåæ°ã®å²ãç®ããããšãã¯ãæ£ããéæ°ããããŠããããšã確èªããŠãã ããã
- çŽåãå¿ããïŒåžžã«å¿ é ã§ã¯ãããŸããããåæ°ãçŽåããªããŸãŸã«ããŠãããšããã®åŸã®èšç®ã§ãšã©ãŒãåŒãèµ·ãããããçµæã®è§£éãé£ãããããããå¯èœæ§ããããŸãã
- ããç®ãšè¶³ãç®ã®ã«ãŒã«ã®æ··åïŒããç®ã¯ç°¡åïŒååÃååã忝Ã忝ïŒã§ããã®ã«å¯Ÿããè¶³ãç®/åŒãç®ã¯å ±é忝ãå¿ èŠã§ããããšãèŠããŠãããŠãã ããã
- åž¯åæ°ã«é¢ãããšã©ãŒïŒåž¯åæ°ãšã®éã®äžé©åãªå€æãã倿ããã«çŽæ¥åž¯åæ°ãæäœããããšãããšãééãã«ã€ãªããå¯èœæ§ããããŸãã
å®è·µçãªæŽå¯ïŒåæŒç®ã¿ã€ãã«ã€ããŠãåé¡ãè§£ãå§ããåã«ã«ãŒã«ãå ¬åŒãæç¢ºã«æžãåºããŸããããããã«ãããåžžã«æ³šæãåèµ·ããéèŠãªã¹ããããèŠèœãšãå¯èœæ§ãæžãããŸãã
ç¿åŸã®ããã®æŠç¥
åæ°ã¢ãžã¥ãŒã«ã«ç¿çããã«ã¯ãäžè²«ããç·Žç¿ãšæŠç¥çãªã¢ãããŒããå¿ èŠã§ãïŒ
- èŠèŠåããïŒç¹ã«æ°ããæŒç®ãåŠã¶éã«ã¯ãåæ°ããŒãåã°ã©ããªã©ã®å³ã䜿çšããŠãå šäœã®äžéšãšããæŠå¿µãçè§£ããŸãã
- 宿çã«ç·Žç¿ããïŒç°¡åãªåé¡ããå§ããåŸã ã«è€éããå¢ããŠããããŸããŸãªåé¡ãè§£ããŸãã
- ããªãããçè§£ããïŒåã«å ¬åŒãæèšããã ãã§ãªããåæŒç®ã®èåŸã«ããè«çãçè§£ããŸãããªãå ±é忝ãå¿ èŠãªã®ãïŒãªãéæ°ããããã®ãïŒ
- 倿§ãªäŸãæ±ããïŒç°ãªãåéãæåããã®çŸå®äžçã®ã·ããªãªãåæ ããåé¡ãè§£ããŸããããã«ãããåŠç¿ããã»ã¹ãããé åçã§é©åãªãã®ã«ãªããŸãã
- ååããè°è«ããïŒä»²éãæå°è ãšäžç·ã«é£ããåé¡ã«ã€ããŠè°è«ããŸãã誰ãã«æŠå¿µã説æããããšã¯ãèªåèªèº«ã®çè§£ãåºãã匷åãªæ¹æ³ã§ãã
- ãªã³ã©ã€ã³ãªãœãŒã¹ãå©çšããïŒæ°å€ãã®æè²ãã©ãããã©ãŒã ããåæ°ã«ç¹åããã€ã³ã¿ã©ã¯ãã£ããªæŒç¿ããããªãã¥ãŒããªã¢ã«ãã¯ã€ãºãæäŸããŠããŸãã
ã°ããŒãã«ãªãã³ãïŒåæ°ãå匷ãããšãã¯ãå Žæã«é¢ä¿ãªããæ¥åžžçã«ééãããã®ã«é¢é£ããäŸãèŠã€ããŠã¿ãŠãã ãããé£ã¹ç©ãåããããè·é¢ãèšç®ããããã¿ã€ã ãŸãŒã³ãçè§£ãããããå Žåã§ããåæ°ãé¢ãã£ãŠããå¯èœæ§ãé«ãã§ãã
çµè«
åæ°ã¢ãžã¥ãŒã«ã¯ãåãªãæ°åŠçãªã«ãŒã«ã®éãŸãã§ã¯ãããŸãããããã¯åœå¢ãè¶ããæ°éçæšè«ã®ããã®åºæ¬çãªèšèªã§ããæçæ°ãçäŸ¡åæ°ãçŽåããããŠè¶³ãç®ãåŒãç®ãããç®ãå²ãç®ãšããäž»èŠãªæŒç®ã®æŠå¿µããã¹ã¿ãŒããããšã§ãæ°ãåããªãã»ã©ã®ã°ããŒãã«ãªæèã§åé¡è§£æ±ºã®ããã®åŒ·åãªããŒã«ãæã«å ¥ããããšãã§ããŸãã
ææŠãåãå ¥ããç±å¿ã«ç·Žç¿ããåæ°ãé害ç©ãšããŠã§ã¯ãªããç§ãã¡ã®åšãã®æ°éçãªäžçãããæ·±ãçè§£ããããã®å ¥ãå£ãšããŠæããŸããããåæ°ã¢ãžã¥ãŒã«ãéããŠã®ããªãã®æ ã¯ãåœéçãªããžãã¹ãç§åŠç ç©¶ããããã¯åã«æ¥åžžã®æž¬å®ãçè§£ããäžã§å¿çšå¯èœãªãããªãã®åæèœåãžã®æè³ã§ãã
ç·Žç¿ãç¶ããã°ããããŠæçæ°èšç®ã第äºã®å€©æ§ãšãªããããªãã®ã°ããŒãã«ãªæ ãã©ããžåããããšã圹ç«ã€ã¹ãã«ãšãªãã§ãããã